
Central European 
Olympiad in Informatics

Tasks, solutions, results, summary
Edited by Gabriela Andrejková and Michal Forišek

Ministry of Education, Science, Research and Sport  of  the Slovak Republic 
Faculty  of  Science, P. J.  Šafárik University in Košice, Slovakia 

Faculty of  Mathematics, Physics and Informatics, Comenius University in 
Bratislava, Slovakia

Slovak Society for Computer Science 

http://ceoi2010.ics.upjs.sk

Košice, 2010



Central European Olympiad in Informatics2

Košice

Slovakia

Authors: 

Gabriela Andrejková, Michal Forišek

Central European Olympiad in Informatics - CEOI 2010

Tasks, solutions, results, summary

Publisher: Equilibria, s. r. o. Košice, www.equilibria.sk
Printing and graphic design: Equilibria, s. r. o., Košice, Poštová 13, 040 01 Košice
Edition: fi rst, Year: 2010, Pieces: 120, Number of Pages: 36

ISBN 978-80-89284-65-8

July 12th –19th 2010, Košice, Slovakia 3

Central European Olympiad in Informatics

Tasks, solutions, 
results, summary

July 12th - 19th , 2010, Košice, Slovakia

http://ceoi2010.ics.upjs.sk

Contents

Branislav Rovan: Informatics  – The landscape …  .................................................................... 5

Regulations …  ............................................................................................................................................. 6

Participants …  ............................................................................................................................................ 8

Organizers … ............................................................................................................................................ 10

Tasks …  .........................................................................................................................................................11

    Marek Zeman: The Alliances ........................................................................................................11

    Michal Forišek: An Arithmetic Rectangle ............................................................................... 14

    František Simančík: Bodyguards ................................................................................................ 17

    Peter Fulla: The MP3 Player ........................................................................................................20

    Lukáš Poláček: PIN ...........................................................................................................................23

    Michal Forišek: A Huge Tower .....................................................................................................26

Results …  ....................................................................................................................................................29

Results of on-line …  ...............................................................................................................................30

Statistics …  ................................................................................................................................................ 31

Fotogallery … ............................................................................................................................................32

Programme ..............................................................................................................................................34

Sponsors … ...............................................................................................................................................36



Central European Olympiad in Informatics4

Preface

Dear readers, dear friends,

17th annual of  Central European Olympiad in Informatics (CEOI 2010) is over. Actually now 
everybody has gone home and we can only hope that those of you who are now reading this 
preface are also friends – if not personal friends of the contestants then at least of the idea 
of young people meeting to test their programming and problem solving skills and becoming 
friends in the process. In spite of everything we are glad to have participated in such an event 
and we would like to publish this summary volume to preserve and communicate some of the 
results – not only problems and their solutions and material ones like lists of contestants and 
awarded points, but also something of the atmosphere as well.

So what will you fi nd in the volume?

The address of Prof. Branislav Rovan  is devoted to sources and aims of Informatics. The 
regulations of CEOI contests are rarely published but might be of interest and were therefore 
included in the volume (General Assembly of CEOI prepared some modifi cations). Those inter-
ested in the actual problems and their solutions will fi nd these in the next part of the volume. 
We hope that this booklet will help many contestants to prepare for their future programming 
contests.  The list of participating teams and their individual members together with the table 
of results make up the “offi cial” part of the volume; in addition, a detailed programme of the 
whole event should help the readers get some of the feeling for the atmosphere. In the last 
years, on-line contests on the same problems are made as parallel contests for contestants 
all over the  world. We publish the results of the on-line contest for some comparison of  
achieved points.

Well, this seems like a good place to fi nish this introduction; thank you for reading it and per-
haps some of us will meet at the coming CEOI’s: next year in Poland,  or the year after that in 
Hungary, or...

And at last but not least we would like to thank  all organizers - Ministry of Education, Science, 
Research and Sport  of  the Slovak Republic,  Faculty  of  Science, P. J.  Šafárik University in 
Košice, Faculty of  Mathematics, Physics and Informatics, Comenius University in Bratislava,  
Slovak Society for Computer Science, and all people behind them – for the great  support of 
the event.

G. Andrejková, M. Forišek

July 12th –19th 2010, Košice, Slovakia 5

Informatics – The Landscape 

It is a rare and pleasant occasion to address on behalf of the Slovak Society for Computer 
Science a group of young people whose perception of the notion of informatics exceeds the 
common misconception. Much too often the ability to use some word-processing software, to 
send e-mails and to browse the web makes people believe they are informatics experts. You 
can appreciate the complexity of problems and the diffi culty of fi nding effi cient algorithms. All 
of you have proved to belong to the top few within your countries. Still, I hope, you do realize 
you have a long way to go to really understand informatics and to become true experts.
Informatics is most frequently defi ned to be the science about storing, organizing, manipulat-
ing and communicating information. What are the main ingredients of the information pro-
cessing task? 
First, one has to “create” information. This involves representing, encoding, ..., real world ob-
jects into some machine readable form, into a form that can be stored and manipulated in 
a computer. The importance of this step is not always appreciated. And it can make a differ-
ence. A frequent example cited is the representation of natural numbers. We could choose 
roman numerals or the decimal notation. It is clear which choice will let us multiply numbers 
easier.
Second, fi nd effi cient ways to manipulate information. This involves design of algorithms, data 
structures, ...,  but also ways to present (visualize) information.
Third, make sure that what was done is what was intended to be done. One has to specify 
what a (software) system should do and prove it does, best in conjunction with the second 
step. Many formal and semiformal specifi cation languages were designed and associated log-
ics and proof systems studied.
Fourth, one has to really make it work. This means implementation and involves many of the 
engineering aspects of computer science. It involves writing up programs (transferring the 
above obtained design into machine executable code) and of course it needs hardware, ma-
chinery that executes programs.
Most of you have some understanding of effi ciency in information processing. To fully under-
stand the challenges in this and the other three areas you will of course need further study 
at the university. Rest assured there are enough hard problems to be solved to keep you 
busy for the rest of your life. And this is still not the whole story. One can clearly see shifting 
of the focus in informatics. In the early years it was the dominance of hardware and IBM was 
the IT company of the world. We are passing through the period of software dominance with 
Microsoft dominating the markets. We are clearly moving to a period where information is 
becoming dominant and you can witness growing importance of “information providers” like 
Google. Informatics is not well prepared for this period. The classical notion of information in-
troduced by Shannon does not capture all aspects of information that are becoming relevant. 
Measuring the amount of information was useful when effi cient transmission and storage of 
information was the main concern. Redefi ning the notion of information to capture its useful-
ness, relevance, security aspects, etc. is the new challenge for informatics. Let me express 
my hope that talented young people like you will help in advancing the understanding of infor-
mation and information processing.

Address by Prof. RNDr. Branislav Rovan, PhD.



Central European Olympiad in Informatics6

Regulations of the 
Central European Olympiad in Informatics

The following document contains the Regulations of the CEOI, 
as approved at the fi nal IC meeting of CEOI 2010. 

Introduction

The Olympiad is organized by the Ministry of Education or another appropriate institution of 
one of the eight Central European countries. According to the rules accepted by the initiators 
of the CEOI, teams of eight Central European country, i.e. Croatia, Czech Republic, Germany, 
Hungary, Poland, Romania, Slovak Republic and Slovenia (suspended), are invited as regular 
participants. Moreover, the host country may invite guest countries and a second team from 
the host country, sharing the same team leader. The International Committee (IC) of the CEOI 
consists of the eight team leaders, and a representative of the host country, who chairs the 
meetings of the IC. A host which is willing to organize a CEOI in a given year in its country, 
has to announce its intent at least one year before that CEOI (during the previous CEOI com-
petition days). Selection of the next host is made by the IC by a majority vote. Revision of the 
Regulations of the CEOI is adopted by the IC by a 2/3 majority vote. Enlarging or decreasing 
the set of CEOI countries can only be adopted by consensus. 

Goals

The CEOI aims at motivating secondary school students of Central Europe to: get more inter-
ested in informatics and information technology in general, test and prove their competence 
in solving problems with the help of computers, exchange knowledge and experience with oth-
er students of similar interest and qualifi cation, establish personal contacts with young people 
of the Central European region. Additionally, the CEOI may: provide training for the students 
participating in the International Olympiad in Informatics (IOI), initiate discussion and coopera-
tion in informatics education in the secondary schools of the Central European countries. 

General Regulations

Each team is composed of up to four secondary school students, team leader and deputy team 
leader. Only the cost of travel to and from the place of the competition should be paid by teams; 
all local expenses are covered by the organizers. Accompanying persons and observers are 
welcome, but they should pay for their stay. Interested people are advised to contact the local 
organizers. The offi cial language is English. Students may use their native languages. Program-
ming problems will be formulated in English and then translated by the team leaders to the na-
tive language of their team. Both versions will be given to the students. Team leaders must be 
able to speak and write in English, as well as the language of their team. The computers will be 
IBM PC compatibles with selected software packages. Only the computers and software with 
built-in help facilities provided by the organizers may be used in the competition. In particular, the 
use of printed materials and electronic devices brought by the contestants will be forbidden. The 
programming languages of the contest are Pascal, C and C++; the precise versions of these 
languages will be updated each year. The compilers and programming environments for the 
above mentioned programming languages will be installed on the hard disk. 

July 12th –19th 2010, Košice, Slovakia 7

Team Composition

Students (contestants) have to be in school during the year when the contest is held and at 
most 19 years old. The team leader will be a member of the General Assembly. Observers and 
persons accompanying a delegation have to pay a fee. 

General Assembly

General Assembly (GA) is composed of the team leaders of the participating countries and the 
president nominated by the host country. General Assembly selects problems to be solved in 
the competition from a set of problems prepared and proposed by the Scientifi c Committee. 
The selection procedure is the following: The chairperson of the Scientifi c Committee distrib-
utes the proposals for competition tasks and presents short descriptions of proposed model 
solutions. Their number equals the number of problems to be solved by the contestants. 
The GA members may either accept or, in case of a major ambiguity of formulation or other 
serious reasons, deny the proposals by voting. When and if a proposal is denied, another 
prepared proposal will be offered to the GA. For such cases, the Scientifi c Committee should 
prepare at least two extra proposals for each round. The text of the accepted proposals 
must not be changed by the GA, except for minor rephrasing that is needed to avoid smaller 
ambiguities. The selected problems will be translated by the team leaders into the native 
languages of the teams. 

Scientifi c Committee

The Scientifi c Committee (SC) consists of a chairperson and a number of experts (SC mem-
bers) from the host country. It becomes active well before the beginning of the Olympiad and 
has the task of selecting and preparing problem proposals. A further task of the Scientifi c 
Committee is to test and evaluate the solutions of the contestants. 

Problems, Competition

The competition consists of two rounds in two days. In both rounds the working time is fi ve 
hours and the contestants will be given three problems to solve. The selected problems will be 
translated by the team leaders into the native languages of the teams. Contestants may sub-
mit written questions to the Scientifi c Committee concerning the formulation and interpreta-
tion of the problems during the initial period of each competition round. Contestants may use 
their native language when asking questions; further details will be regulated by each year 
competition rules. The host country publishes competition rules that include the description 
of the competition environment and details on the course of competition at least one before 
CEOI starts. No special hardware requirement or software packages (e.g. graphic packages) 
will be needed to solve the problems. Generally, the contents and the form of the CEOI tasks 
is guided by the IOI syllabus. The whole communication between the CEOI authorities and con-
testants will be in a written form. 



Central European Olympiad in Informatics8

Participants

B U L G A R I A
Team Leader: Emil Kelevedjiev

Deputy Leader: Pavlin Peev

Contestants: Anton Anastasov, Vladislav Haralampiev, Rumen Hristov, Mihail Kovachev

C R O A T I A
Team Leader: Ivo Šeparović

Deputy Leader: Luka Kalinovčić

Contestants: Stjepan Glavina, Ivan Katanić, Ivica Kičić, Adrian Satja Kurdija

C Z E C H  R E P U B L I C
Team Leader: Daniel Kráľ

Deputy Leader: Pavel Töpfer

Contestants: Lukáš Folwarczný, Filip Hlásek, Michal Mojzík, Štěpán Šimsa

G E R M A N Y
Team Leader: Wolfgang Pohl

Contestants: Simon Bürger, Patrick Klitzke, Aaron Montag, Klaas-Hendrik Poelstra

Evaluation

When the working time is over, the solutions of each of the contestant will be checked by an 
evaluator. The evaluation is based on the test data and the responses of the programs only. 
The evaluation procedure concludes with the meeting of the Scientifi c Committee, where the 
evaluation reports are discussed. Potential disagreements are dissolved by voting. Achieving 
a proper and balanced evaluation is the responsibility of the Scientifi c Committee. If a team 
leader does not accept the results of the evaluation, he/she may appeal to the General As-
sembly. Finally, the president of SC or IC presents the anonymous results to the General As-
sembly to take fi nal decisions. 

Results and Prizes

The General Assembly will determine the minimum scores for the gold, silver and bronze med-
als. The proportion of these gold, silver and bronze medals should be approximately 1:2:3. 
About 50% of the contestants should receive medals. Each contestant will receive a certifi -
cate of participation. The medals, certifi cates and other prizes will be given to the contestants 
at the offi cial closing ceremony.

July 12th –19th 2010, Košice, Slovakia 9

H U N G A R Y
Team Leader: Gyula Horváth

Deputy Leader: László Zsakó

Contestants: Patrik Adrián, Richárd Palincza, Zoltán Szenczi, Ágoston Weisz

P O L A N D
Team Leader: Jakub Radoszewski

Deputy Leader: Tomasz Kulczyński

Contestants: Igor Adamski, Adrian Jaskółka, Jan Milczek, Anna Piekarska

R O M A N I A
Team Leader: Zoltan Szabo

Deputy Leader: Andrei-Paul Puni

Contestants: Vlad-Alexandru Gavrilă, Victor-Cristian Ionescu, Alexandru Tache, Bogdan-Cristian Tătăroiu

S L O VA K I A  1
Team Leader: Andrej Blaho

Deputy Leader: Tomáš Vinař

Contestants: Matej Balog, Tomáš Belan, Ján Hozza, Filip Sládek

S L O VA K I A  2
Team Leader: Andrej Blaho

Deputy Leader: Tomáš Vinař

Contestants: Michal Anderle, Martin Pitoňák, Ján Sebechlebský, Marek Špano

S W I T Z E R L A N D
Team Leader: Sandro Feuz

Deputy Leader: Adrian Roos

Contestants: Thomas Leu, Lazar Todorović, Josef Ziegler, Nikola Džokič



Central European Olympiad in Informatics10

Steering Committee

prof. RNDr. Pavol Sovák, CSc. (chair) 
prof. RNDr. Andrej Bobák, DrSc. 
doc. RNDr. Dana Pardubská, PhD. 
prof. RNDr. Branislav Rovan, PhD. 

Scientifi c Committee

RNDr. Michal Forišek, PhD. (chair)
RNDr. Ján Katrenič 
Mgr. Monika Steinová 
Mgr. Julka Šišková
Mgr. Lukáš Poláček
Mgr. Michal Nánási
Mgr. Marek Zeman
 
Organizing Committee

doc. RNDr. Gabriela Andrejková, CSc. (chair) 
doc. RNDr. Gabriel Semanišin, PhD. 
RNDr. František Galčík, PhD. 
RNDr. Rastislav Krivoš-Belluš 
doc. RNDr. Božena Mihalíková, CSc.
PhDr. Svetlana Libová 
Doc. RNDr. Dušan Šveda, CSc.
Jana Boháčová 
Mgr. Peter Mlynárčik 
Mgr. Ladislav Mikeš  
Veronika Vaneková

Technical Committee

Mgr. Martin Rejda (chair)
Ing. Marián Andrejko
Eduard Dvorný
Mgr. Ľudovít Hvizdoš
Michal Petrucha
Marek Bundala
Peter Fulla
 
Guides

Eva Maďarošová (Hungary) 
Zuzana Bedécsová (Poland) 
Mária Dolinská (Bulgaria) 
Ivana Ďurčová (Germany) 
Mária Harčarufková (Slovakia 1, 2) 
Natália Iriasová (Croatia) 
Matúš Jaraba (Switzerland) 
Ján Jerguš (Romania) 
Mária Piatnicová (Czech republic) 

Reporters

Maroš Andrejko
Gabriela Hucovičová
Pavol Rajzák 
Samuel Kupka

CEOI 2010 was organized 
under the auspices of 

Ministry of Education, Science, Research and Sport  of  the Slovak Republic

 
Organizers

Faculty of Science, P.J. Šafárik University in Košice, Slovakia 
Slovak Society for Computer Science 
Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Slovakia 

July 12th –19th 2010, Košice, Slovakia 11

TASKS OF THE CEOI 2010

The Alliances

Author: Marek Zeman, FMFI UK Bratislava                               
Problem preparation: Marek Zeman, Michal Forišek, FMFI UK Bratislava

In a fantasy world, there is a large island of a rectangular shape. The sides of the island hap-
pen to be exactly R miles and C miles long, and the whole island is divided into a grid of areas. 
Some of the areas are uninhabited, and the rest are occupied by villages of fantasy beings: 
elves, humans, dwarves, and hobbits. Each area contains at most one village. Two villages are 
considered neighbours if their areas share a side. 
Recently, the villages became terrifi ed of the Great Evil. In order to feel safer, each village has 
decided to form military alliances with some of its neighbours. An alliance always involves two 
neighbouring villages, and it is a mutual and symmetric agreement.
Depending on the species living in the village, the inhabitants will not feel safe unless a specifi c 
confi guration of alliances is formed:
• The elves feel confi dent, and therefore need exactly one alliance.
• Human villages require alliances with exactly two neighbours. Moreover, leaving two op-

posite sides of the village exposed is bad for tactical reasons. Therefore the two allied 
neighbours cannot be located on opposite sides of the village.

• Dwarves require alliances with exactly three neighbours.
• Hobbits are extremely scared, and therefore need to have alliances with all four of their 

neighbours.
In other words, except for humans each village requires a particular number of alliances, but 
does not care which neighbours will be its allies. For humans there is an additional restriction: 
the allied neighbours must not be on opposite sides of the village.
The conditions must be fulfi lled irrespective of the position of the village on the map. For 
example, a dwarf village desires three alliances. If it is located on the coast, this means that 
it must have alliances with all three neighbours. If there is a dwarf village in a corner of the 
island, its inhabitants will never feel safe.

Task specifi cation

For a given island description, your task is to decide whether it is possible to form alliances so 
that all inhabitants of the island will feel safe. In case of a positive answer, your task is also to 
suggest one viable confi guration of alliances. In case of multiple solutions, choose an arbitrary 
one.

Input specifi cation

The fi rst line of the input contains two integers R and C specifying the size of the island. The 
following R lines encode a description of the island. Each line consists of C space-separated 
numbers between 0 and 4:
-  0 means uninhabited area,
-  1 means an elf village,
-  2 means a human village,



Central European Olympiad in Informatics12

-  3 means a dwarf village.
-  4 means a hobbit village,

(Note that the number in the input always corresponds to the number of desired alliances for 
that village.)

Constraints

In all test cases assume that 1 ≤ R, C ≤ 70.
In test cases worth a total of 55 points we have  min (R, C) ≤ 10.  Out of these, in test cases 
worth 15 points R · C ≤ 20.

Another batch of test cases worth 10 points contains maps with only uninhabited areas and 
human villages.
(This batch is not included in the test cases worth 55 points.)

Output specifi cation

If there is no solution, output a single line with the string “Impossible!” (quotes for clarity). Oth-
erwise, output one valid map of alliances in the following  format.

Each area should appear in the output as a matrix of characters. If the area is uninhabited, the 
corresponding section of the output will be fi lled with  . (dot)  symbols. If the area has a village 
there should be a symbol  O (uppercase letter O) in the middle representing the village itself, 
and there should be symbols X (uppercase letter X) representing a confi guration of its allies. 
The rest of the matrix should be fi lled with . (dot)  symbols.

For each village type, all possible layouts of alliances are shown in the image below.

Examples

input:

3   4
2   3   2   0
3   4   3   0
2   3   3   1

output:

. . . . . . . . . . . .

. O X X O X X O . . . .

. X . . X . . X . . . .

. X . . X . . X . . . .

. O X X O X X O . . . .

. X . . X . . X . . . .

. X . . X . . X . . . .

. O X X O X X O X X O .

. . . . . . . . . . . .

input:

1   2
2   1

output:
Impossible!

July 12th –19th 2010, Košice, Slovakia 13

Solution

For some easy points to start with, note that a human village is uniquely determined if we 
know whether it has an alliance with its top and its left neighbour. Using this observation, 
inputs that contain human villages only can be solved simply: just iterate row by row, each cell 
will be uniquely determined at the time when you visit it. (Of course, in the optimal solution it is 
not necessary to implement this separately.)
Inputs with a small number of columns can be solved using dynamic programming or recursion 
with memoization: Process the cells row by row, each row left to right. At any moment we will 
ask the same question: it is possible to create alliances in the remaining cells in such a way 
that everything matches? Note that the answer does not depend on how the alliances look like 
in the already processed part of the map. It only depends on the following variables: 
-  what is the next cell to be processed, 
-  for each column, is there an alliance (edge) going down from the last processed cell?
This gives us O(RC2C) states. Each time we fi nd out the answer for any of the state, we store 
it in order to avoid computing the same thing again in the future. The time complexity of this 
solution is exponential in the length of the shorter edge of the map, and polynomial in the 
length of the longer edge.
The optimal solution solves the task using maximum matching in a bipartite graph. We will 
replace each village by a cluster of nodes as shown below (in order: empty cell, humans, elves, 
dwarves, hobbits):

Note that a human village is replaced by two separate nodes: one connected to the top and to 
the bottom, the other to the left and to the right. Edges which cross cell boundary represent 
potential alliances. It is possible to design the alliances if and only if the resulting graph has a 
perfect matching, i.e., a matching that covers all vertices. This should be obvious for all village 
types except for dwarves. For a dwarf village, note that we must match the central node to 
one of its four neighbours. From each of the remaining three neighbours of the central node 
the matching edge will then lead across the cell boundary. Also note that the graph is bipartite: 
to obtain one possible partition, colour the cells in a chessboard fashion, and colour all nodes 
by their cell colour, except for central nodes for dwarf villages, which get the opposite colour.



Central European Olympiad in Informatics14

An Arithmetic Rectangle

Author: Michal Forišek, FMFI UK Bratislava       
Problem preparation: Monika Steinová, Michal Forišek, Juliana Šišková, FMFI UK Bratislava

After the lesson on arithmetic progressions, the teacher gave Peter homework: a sheet of 
paper with numbers written in some cells of a grid. Some of the cells were empty. Peter’s 
task is to create an arithmetic rectangle by fi lling in the missing numbers. In an arithmetic 
rectangle, all the numbers in each row and in each column have to form an arithmetic 
progression in the order in which they appear.

For example, this is an arithmetic rectangle of type 3 x 5:

1   3   5   7   9
2   2   2   2   2
3   1  -1  -3  -5

Peter is lazy to do such tasks manually. He wants you to write a program that will do it for him.

Task specifi cation

You are given a grid of integers, some of them substituted by dots. Find out whether it is 
possible to replace the dots by some rational numbers in order to obtain an arithmetic 
rectangle. If there is a solution, fi nd one.

Note: An arithmetic progression is a sequence of numbers such that the difference of any two 
successive elements of the sequence is a constant.

Input specifi cation

The fi rst line of the input contains two positive integers R  and C : the dimensions of the grid. R 
lines follow, each of them containing C tokens separated by single spaces. Each of the tokens 
is either a dot (.), or an integer.

Constraints

Each number given in the grid is between -100 and 100, inclusive. There are 10 batches of 
test cases, worth 10 points each. In batches 1 through 9 we have . The properties of the 
individual batches are given below.

- Batch  1. All numbers are already fi lled in.
- Batch  2. Either R = 1 or C = 1 in each 

test case.
- Batch 3. R = C = 2 in each test case.
- Batch 4. Each test case has a unique so-

lution that can be found using the approach 

suggested in the fi rst example.
- Batch 5. Each test case has a unique so-

lution, and the solution contains integers 
only.

- Batch 6. Each test case has a unique so-
lution.

July 12th –19th 2010, Košice, Slovakia 15

- Batch 7. Each test case either has a 
unique solution that contains integers only, 
or has no solution at all.

- Batch 8. Each test case either has a 
unique solution, or has no solution at all.

- Batch 9. Arbitrary test cases.
- Batch 10. Arbitrary test cases with 1 ≤ R, 

C ≤ 50.

input:

3   5
 .    .    3    .    5
 .    .     .    5    .
 .    .     .     .    7

output:

1   2   3   4   5
2   3   4   5   6
3   4   5   6   7

The above example can be solved as 
follows: First, note that the second 
number in the last column must be 6.
Then fi ll in row 1, row 2, and fi nally fi ll 
in columns 1 through 4.

input:

1   6
4    .    .   0   .    .   

output:

4   8/3   4/3   0   -4/3   -8/3

input:

1   4
1   2    .   2

output:

No solution.

input:

3   3
1    .    .
 .    2   .
 .     .   3

output:

1   2   3
1   2   3
1   2   3

This is one of many possible solutions 
for this input.

Output specifi cation

If there is no solution, output a single line with the string “No solution.” (quotes for clarity). 
If there are multiple solutions, pick and output any single solution.

When outputting a solution, output R rows, each with C space-separated rational numbers.

Each rational number shall be printed as “N/D”, where D is positive and N and D are relatively 
prime. If D is 1, omit the “/D” part.

No number in your output may have more than 20 digits. (It should be easy to satisfy this 
restriction, its only intent is to simplify checking   your outputs.)

Examples



Central European Olympiad in Informatics16

Solution
Several of the test batches were simple to solve even if one has no idea about how to solve the 
task in general. For example, in the fi rst batch the entire grid was already fi lled in, and all we had 
to do was to check whether it is fi lled correctly. This can be done using two nested cycles. In the 
third batch each input had two rows and two columns only. In this case, any rectangle of num-
bers is an arithmetic rectangle, because every sequence with only two elements is arithmetic. 
Hence it was suffi cient to replace all dots by arbitrary values, e.g., zeroes.

In the fourth batch we were guaranteed that a greedy approach works: whenever you have a row 
or a column with two known values, use them to compute all other values of the unique arithme-
tic sequence that matches the two known values. It is easily shown that it is enough to iterate 
twice over all rows and columns: if it is possible to solve the instance using the greedy approach, 
we will fi rst fi ll in at least one line (a row or a column), then at least two orthogonal lines (two 
columns or two rows), and fi nally all lines parallel to the fi rst one (all remaining rows or columns). 
Some additional points could be obtained by guessing: if the greedy algorithm stopped and we 
still don’t know all cells, guess that the fi rst unknown one contains a zero.

To solve the general case, we need to start thinking in a more systematic way. Intuitively, it 
seems obvious that we cannot have too many values given before all other cells are determined 
uniquely. For example, we may note that once we fi x the four values in the corners, the rest of the 
grid is determined uniquely. But how can we to formalize this intuition?

There are many possibilities that only differ in details: some produce slightly uglier equations than 
the others. We will pick one of the nicer possibilities. Let A be the value in the upper left corner 
of the grid, let B and C be its horizontal and vertical neighbours, and let D be the other common 
neighbour of B and C. It is easy to see that the entire grid is determined by these four values. For 
example, the fi rst row contains the values A, B=A+(B-A), A+2*(B-A), A+3*(B-A), …

For an empty grid, any combination of values for A, B, C, and D would give us a valid solution. If the 
given grid is not empty, each of the given values gives us a constraint on A, B, C, D. It can easily 
be seen that this constraint can be expressed as a linear equation in the variables A, B, C, D. 
Hence we reduced the general task to the following standard problem: we are given a system of 
linear equations in four variables, we need to check whether it is solvable, and fi nd one solution 
if it is. This can be done using the Gaussian elimination process: we manipulate the equations in 
such a way that we obtain an equivalent system in which all coeffi cients below the main diagonal 
are zero.

Note that the number of variables is very low, so it is possible to solve the system in integer 
variables without overfl ow, and only then to evaluate the cells as fractions. If we have two equa-
tions E

1
 and E

2
 such that the variable A has coeffi cient c

1
 in E

1
 and c

2
 in E

2
, we can replace the 

second equation by the equation c
2
*E

1
-c

1
*E

2
. In this equation A has coeffi cient zero. Note that 

if gcd(c
1
,c

2
)>1, we can then reduce the coeffi cients in this new equation, dividing them all by 

gcd(c
1
,c

2
). This is necessary to prevent overfl ow. In this way we get rid of most of the fractional 

arithmetic.

Another way how to solve all cases (possibly except for the largest one) without fractions: one 
can realize that as the input contains integers only, all rational numbers in the answer must 
necessarily have small denominators. It is then possible to solve the system using fl oating point 
variables, and only in the end to convert the fl oating point numbers into matching fractions.

July 12th –19th 2010, Košice, Slovakia 17

Bodyguards

Author: František Simančík,                        
Problem preparation: Daniel Bundala, FMFI UK Bratislava, Ján Katrenič, PF UPJŠ Košice

Have you ever met the members of the ten European royal houses, the Argentinian football 
team including their coach Diego Maradona, or all of the Turing and Fields medal prize win-
ners? We have invited many celebrities from all over the world to the CEOI 2010 closing cer-
emony. Unfortunately, very few of them responded to our invitation, and those who did, politely 
rejected. Nevertheless, do not forget to bring your camera to the ceremony, one never knows 
who might turn up!

As you can imagine, the security of the guests is of utmost importance. The problem is how to 
seat their bodyguards in the audience so that maximal security is guaranteed.

The auditorium contains many seats, arranged into a large grid. Based on the safety 
regulations a security expert has determined necessary bodyguard counts for each row and 
each column of the auditorium.

Task specifi cation

You are given the required number of bodyguards for each row and column of the auditorium. 
This information is given in a compressed form as explained below. Determine whether it is 
possible to place the bodyguards in such a way that in each row and each column we would 
have exactly the required number of bodyguards.

Assume that the auditorium is initially empty, i.e., you may seat bodyguards wherever you wish. 
Each seat may only be occupied by a single bodyguard.

Input specifi cation

The input begins with the description of the rows. The fi rst line of the input contains one posi-
tive integer R : the number of groups of rows. R  lines follow. Each of these lines contains 2 
positive integers: the required number of bodyguards in each row of the group and the num-
ber of rows that form the group.

This is followed by the description of column groups. The next line contains one positive inte-
ger C : the number of groups of columns. C  lines follow. Each of these lines contains 2 positive 
integers: the required number of bodyguards in each column of the group and the number of 
columns that form the group.

Constraints

You may assume that the total number of bodyguards required by row constrains is the same 
as the total number of bodyguards required by column constraints. You may assume that this 
total number of bodyguards is at most 1018.



Central European Olympiad in Informatics18

You may assume that all numbers are positive integers that 
do not exceed 1 000 000 000.

• You may assume that 1 ≤ R, C ≤ 200 000.
Several batches of test cases, worth a total of 50 points, satisfy the following criteria:
the total number of rows in the auditorium will be at most 2 000
the total number of columns  in the auditorium will be at most 2 000
the total number of bodyguards will be at most 1 000 000.

In a test batch worth another 10 points we have R, C ≤ 100 in each test case.

Output specifi cation

Output a single line with the number “1” if the constraints are satisfi able and the number “0” 
otherwise (quotes for clarity).

Example

input:

2
2   1
1   2
1
2   2

output:

1

There are two groups of rows: 
the fi rst one has one row that 
must contain two bodyguards, the 
second one has two rows that must 
contain one bodyguard each. There 
is one group of columns: each of 
the two columns must contain two 
bodyguards. One possible placement 
of bodyguards:

X   X
X    .
 .   X

input:

2
3   2
1   1
2
3   2
1   1

output:

0

Two of the rows are required to be 
full of bodyguards. Hence there must 
be at least two bodyguards in each 
column. However, the last column 
must only contain one bodyguard, 
which is a contradiction.

July 12th –19th 2010, Košice, Slovakia 19

Solution

The following simple greedy strategy works: pick the row with most bodyguards required. 
Place the bodyguards into columns that currently require the most bodyguards. To prove 
that this strategy works, assume that a valid seating exists and consider the current row. 
Mark the seats where we want to seat the bodyguards. If one of these seats (in column C

1
) 

is empty, our row must contain a bodyguard B sitting in an unmarked seat (in column C
2
). As 

C
1
 contains at least as many bodyguards as C

2
, there must be some other row such that in 

C
1
 we have a bodyguard B’ and in C

2
 we don’t. We can then move B’ to column C

2
 and B to 

column C
1
. After fi nitely many repetitions of the above process we will get a valid seating in 

which our row contains bodyguards precisely in the required places.
This strategy, if implemented using an effi cient priority queue (such as a heap) scored 50 
points.
For the optimal solution we need a faster strategy. First of all, note that the relative order 
of rows and columns does not matter. So the fi rst step is to sort the groups according to 
the number of bodyguards in each row/column, starting with the ones containing most 
bodyguards.
Consider the seating of the bodyguards in the auditorium in which  there is the correct 
number of bodyguards in each row, and these occupy the fi rst possible columns in each row. 
This seating is possibly invalid but it shows us a necessary condition for a solution to exist: 
For any K, sum the required number of bodyguards in the fi rst K columns, and also sum the 
current number of bodyguards in those columns. Clearly, the current number of bodyguards 
is the largest possible. Hence if for some K the required number exceeds the current number, 
we know that no solution exists.
On the other hand, we claim that the above set of conditions is also suffi cient for a solution 
to exist. To prove that, we will describe a process how to construct one valid solution, given 
that all conditions hold. Start with the possibly invalid seating defi ned above, then process the 
columns one by one. For each column: when you start processing it, it contains at least as 
many bodyguards as it should. If it contains more, pick the lowest rows (the ones containing 
fewest bodyguards) and send their bodyguards from the current column into the fi rst available 
column on the right. It is easily verifi ed that this change is always possible, and after this 
change the conditions still hold for all K.
The fi nal step is to note that it is not necessary to actually check the conditions for all possible 
K, we just have to do this for the places where the required number of bodyguards changes.     



Central European Olympiad in Informatics20

The MP3 Player

Author: Peter Fulla, FMFI UK Bratislava                    
Problem preparation: Peter Fulla, Daniel Bundala, FMFI UK Bratislava

Georg’s new MP3 player has many interesting features, one of them being the key lock. All the 
keys are locked after more than T seconds of inactivity. After the key lock is engaged, no key 
performs its original function, but if any key is pressed, the key lock is disengaged.

For example, assume that T = 5 and the player is currently locked. Georg presses the key A, 
waits for 3 seconds, presses the key B, waits for 5 seconds, presses C, waits for 6 seconds, 
and presses D. In this case only the keys B and C perform their regular functions. Note that 
the keys became locked between C and D was pressed.

Sound level of the MP3 player is controlled by the + and - keys, increasing and decreasing 
volume by 1 unit respectively. The sound level is an integer between 0 and V

max
. Pressing the + 

key at volume V
max

 or pressing the - key at volume 0 leaves the volume unchanged.

Task specifi cation

Georg does not know the value of T. He wanted to fi nd it by an experiment. Starting with a 
locked keyboard, he pressed a sequence of N + and - keys. At the end of the experiment Georg 
read the fi nal volume from the player’s display. Unfortunately, he forgot to note the volume be-
fore his fi rst key press. For the purpose of this task, the unknown initial volume will be denoted 
V

1
 and the known fi nal volume will be denoted V

2
.

You are given the value V
2
 and a list of keystrokes in the order in which Georg made them. 

For each key, you are given the type of the key (+ or -) and the number of seconds from the 
beginning of the experiment to the moment when the key was pressed. The task is to fi nd the 
largest possible integer value of T which is consistent with the outcome of the experiment.

Input specifi cation

The fi rst line of the input contains three space-separated integers N, Vmax and V2 
(0  ≤ V

2 
 ≤ 

V
max

). Each of the next N lines contains a description of one key in the sequence: a character 
+ or -, a space and an integer C

i
 (0 ≤ C

i 
≤ 2·109), the number of seconds from the beginning of 

the experiment. You may assume that the key presses are in sorted order and that all times 
are distinct (i.e., C

i
 < C

i 
+ 1 for all 1≤i<N).

Constraints

You may assume that 2≤N≤100 000 and 2 ≤ V
max 

≤ 5000.
In test cases worth 40 points N≤4000.
In test cases worth 70 points N·V

max
≤400 000.

July 12th –19th 2010, Košice, Slovakia 21

Output specifi cation

If T can be arbitrarily large, output a single line containing the word “infi nity” (quotes for clarity).

Otherwise, output a single line containing two integers T and V1 separated by a single space.

The values must be such that carrying out the experiment with locking time T starting at 
volume V1 gives the fi nal volume V2. If there are multiple possible answers, output the one with 
the largest T ; if there are still multiple possible answers, output the one with the largest V1.
(Note that at least one solution always exists: for T = 0 none of the keys performs its action, 
so it suffi ces to take V

1
 = V

2
.)

Examples

input:

6   4   3
 -    0 
+   8
+   9
+  13
 -   19
 -    24

output:

5   4

For T = 5 the keys perform the 
following actions: unlock, unlock, +, +, 
unlock, -.
For any we would get V2 = 3. Note 
that the output contains the largest 
possible V1.
For the last two keystrokes will both 
be active, hence it will be impossible 
to have V2 = 3.

input:

3  10  10
+   1
+   2
 -     47

output:
infi nity

If  V1 = 10 then for any T we’ll have V2 
= 10.



Central European Olympiad in Informatics22

Solution 

To start attacking this task, there are many slow correct solutions which are reasonably easy 
to implement.  The simplest possible strategy is to try all possible values of T and V

1
. Once we 

fi x T and V
1
, we can simply simulate the process and check whether the fi nal volume is V

2
 or 

not.
The fi rst possible improvement: we do not have to consider all values of T, only those where 
something changes – i.e., such that for delay T+1 some new keystroke will become active. 
There are at most N-1 such values of T.
Another place where the trivial solution can be improved is the value V

1
. Note that for a fi xed T 

the function f
T
 that returns V

2
 for a given V

1
 is non-decreasing: if we start the experiment at a 

higher volume, we will end it at least at the same volume as before. Additionally, if f
T
(v+1) > f

T
(v), 

then clearly f
T
(v+1) = f

T
(v)+1. This makes our situation much easier. For a given T, if we want to 

check whether V
2
 can be obtained, we can simply check whether f

T
(0) <= V

2
 <= f

T
(V

max
). Once 

we know the optimal T, we can fi nd the largest valid V
1
 using binary search.

There are several solutions with slightly different time complexities that score 100 points. 
We will now describe one of them. For this optimal solution we need to take a closer look at 
f
T
. Note that it always has the following form (for some constants A,B,C): for V

1
 from 0 to A-1 

the function is constant and equal to C, for V
1
 from A to B-1 it increases by 1, and then from 

B to V
max

 it is constant again. Additionally, this is not only true for the entire sequence: For any 
segment of keystrokes and any T the corresponding function can be described in this form. 
Also note that if we have two segments of keystrokes for which we know their functions and 
concatenate them, the new function for the longer segment can be computed in O(1).
We will now start at T=0 and keep on increasing T until we try all interesting values of T. We 
will use an interval tree to represent the current function for various segments of the input. 
Each time we increase T to the new interesting value, some keys will become active. For each 
of them, update the interval tree: change the function of the corresponding 1-key segment 
and recompute all O(log N) segments that contain it. After each such change, the root of the 
interval tree contains the function for the entire sequence of keystrokes, hence we can easily 
verify whether V

2
 can be obtained for the current T.

July 12th –19th 2010, Košice, Slovakia 23

PIN

Author: Lukáš Poláček,               
Problem preparation: Lukáš Poláček, Daniel Bundala, Michal Forišek, Ján Katrenič

Martin has just been hired as a computer administrator in a big company. The company did 
not change its authorization system since 1980s. Every person has a four-digit personal iden-
tifi cation number (PIN). Nobody uses usernames or passwords, you can login just by typing 
your PIN. As the company grew, they added the possibility to use letters as well, but the length 
of the PIN remained the same.

Martin is not happy with the situation. Suppose there are people whose PINs differ only at a 
single place, for example 61ab and 62ab. If the fi rst person accidentally presses 2 instead 
of 1, the system would still let him in. Martin would like to make the statistics about the PINs 
currently in use, in particular, compute the number of pairs of PINs that differ at 1, 2, 3 or 4 
positions. He hopes that these numbers will be alarming enough to convince his boss to invest 
in a better system.

Task specifi cation

Given the list of PINs and an integer D, fi nd the number of pairs of PINs that differ at exactly 
D positions.

Input specifi cation

The fi rst line of the input contains two space-separated positive integers N and D, where N is 
the number of  PINs and D is the chosen number of differences. Each of the following N lines 
contains a single PIN.

Constraints

You may assume that in all test cases and .
Each PIN is of length 4 and each character is either a digit or a lowercase letter between ‘a’ 
and ‘z’, inclusive.
You may assume that all PINs in the input are different.
In test cases worth 15 points, .
In test cases worth 60 points, . Out of those, in test cases worth 30 points, D = 1.
In test cases worth 75 points, every PIN will only consist of digits or lowercase letters between 
‘a’ and ‘f’,
inclusive. Thus it can be viewed as a hexadecimal number.

Output specifi cation

Output a single line with a single number: the number of pairs of PINs that differ at exactly 
D positions.



Central European Olympiad in Informatics24

input:

4        1
0   0   0   0
 a   0   1   0
0   2   0   2
 a   0   e   2

output:

0

For these PINs each pair of PINs 
differs at more than one position.

input:

4        1
0   0   0   0
 a   0   1   0
0   2   0   2
 a   0   e   2

output:

3

There are three pairs that differ at 
exactly 2 positions: (0000,a010), 
(0000,0202), and (a010,a0e2).

Solution 

The fi rst step towards solving this task is to write a simple program that will use brute force 
to compute the answer: it should compare all pairs of PINs and for each pair of PINs compute 
the number of differences. This program scores 15 points and additionally you can use it later 
to test your implementation of a more effi cient solution.
For partial score you could decide to focus on the simpler cases: D=1 and possibly D=2. For 
D=1 there is a pretty simple solution: Start by allocating an array with 364 Booleans, each 
representing some 4-character string. Set those that correspond to the given PINs to true. 
Now, for each PIN generate all 35*4 strings that differ from it in a single character. Using 
the above array, we can easily check whether the new string is also a PIN. In this way, we will 
count each good pair of PINs twice (once in each direction).
The above approach can also be modifi ed to handle D=2 in approximately the same number 
of steps. To do so, we will do the same as for D=1, and we will use an additional array of  364 
integers, initialized to zeroes. Once again, for each PIN we will generate all strings that only 
differ from that PIN in a single character. For each such PIN we increment the counter at 
the appropriate position in the array. Once this phase is done, for each of the 364 possible 
strings we know the number of PINs that differ from this string in a single character. And this 
additional information is suffi cient to compute the answer for D=2. How?
Consider a situation in which we generated the same string for two different PINs. We will call 
this situation a collision. For example, if the string ‘ab3d’ was generated 4 times, there were 
(4*3)/2=6 collisions for this string. For the given test case, let A be the answer for D=1 and 
let B be the answer for D=2. We already know A and we want to compute B. To do so, note 
that for each of the A pairs of PINs in distance 1 we get 36-2=34 different collisions, and for 
each of the B pairs of PINs in distance 2 we get 2 different collisions. Hence it is suffi cient to 
compute the total number of collisions, the value B is then obtained by solving a simple linear 
equation. 
Note that in the above solution we obtained the correct answer for D=2 by computing the 
answer for D=1 fi rst, and then subtracting a factor based on this answer at an appropriate 

Examples

July 12th –19th 2010, Košice, Slovakia 25

point in the computation for D=2. This observation can suggest the right tool that can be used 
to solve the remaining cases as well: the principle of inclusion and exclusion.
Instead of computing how many pairs of PINs differ on some places, we will compute the 
complementary information: how many pairs of PINs match? More precisely, for each of the 
24 sets of places we will compute the number of pairs of PINs that match on those places 
(and either match or differ at all other places, we don’t care about those). For example, one 
of the 16 numbers we will compute will be the number of pairs of PINs that match on the fi rst 
place and the third place.
And this information is all we need to compute the answers for all distances. For example, 
the answer for D=4 (i.e., the number of pairs that differ in all places) can be computed as (the 
number of all pairs) – (for each place, the number of pairs that match on that place) + (for 
each pair of places, the number of pairs that match on those places) – (for each three places, 
the number of pairs that match on those places).



Central European Olympiad in Informatics26

A Huge Tower

Author: Michal Forišek,   
Problem preparation: Monika Steinová, Michal Forišek, Michal Nánási

The ancient Babylonians decided to build a huge tower. The tower consists of N cubic building 
blocks that are stacked one onto another. The Babylonians gathered many building blocks 
of various sizes from all over the country. From their last unsuccessful attempt they have 
learned that if they put a large block directly onto a much smaller block, the tower will fall.

Task specifi cation

Each two building blocks are different, even if they have the same size. For each building block 
you are given its side length. You are also given an integer D with the following meaning: you 
are not allowed to put block A directly onto block B if the side length of A is strictly larger than 
D plus the side length of B.
Compute the number of different ways in which it is possible to build the tower using all the 
building blocks.
Since this number can be very large, output the result modulo 109 + 9.

Input specifi cation

The fi rst line of the input contains two positive integers N and D : the number of building blocks 
and the tolerance respectively. The second line contains N space-separated integers; each 
represents the size of one building block.

Constraints

All numbers in the input fi les are positive integers not exceeding 109.
N is always at least 2.
In test cases worth 70 points N will be at most 70.
Out of those, in test cases worth 45 points, N will be at most 20.
Out of those, in test cases worth 10 points, N will be at most 10.
For some of the test cases the total number of valid towers will not exceed  1 000 000. These 
test cases are worth 30 points in total.
For the last six test cases (worth 30 points) the value of N is larger than 70. No upper bound 
on N is given for these test cases.

Output specifi cation

Output a single line containing a single integer: the number of towers that can be built, modulo 
1 000 000 009.

July 12th –19th 2010, Košice, Slovakia 27

input:

4   1
1   2   3   100

output:

4

We can arrange the fi rst three 
blocks in any order, except for 2,1,3 or 
1,3,2. The last block has to be at the 
bottom.

input:

 6     9
10   20   20   10   10   20

output:

36

We are not allowed to put a cube of 
size 20 onto a cube of size 10. There 
are six ways to order the cubes of 
size 10, and six ways to order the 
cubes of size 20.

Solution

A simple cycle over all permutations of cubes was suffi cient to score 10 points for this 
problem. The fi rst possible improvement is to build the tower from the bottom to the top, 
using a recursive function that backtracks as soon as the current tower becomes invalid. 
Such solution will skip some of the permutations that do not represent valid towers, hence for 
some test cases it will be faster. A simple backtracking solution would score 20 points.
There is a simple algorithmic improvement which we can add to the backtracking: at any 
moment, we can check whether there is at least one possible way to build the rest of the 
tower using the remaining cubes. This is pretty simple: consider the largest of the remaining 
cubes. If we want to create a valid tower, we have to place this cube on the top sooner or later. 
So let’s try to do it using a simple greedy approach: if we have an unused cube larger than the 
one currently on the top that can be added to the top, do it. Clearly, if this approach fails to 
place the largest unused cube into the tower, it is not possible at all. On the other hand, once 
we manage to place the largest unused cube, the remaining unused cubes can be stacked 
on its top in sorted order. If we sort the cubes in the beginning, this greedy check can be 
implemented in linear time using a simple cycle.
How does this help? Each time we make a recursive call, we will run the above check, and if 
there are no valid towers for the current branch, we will backtrack immediately. It can easily 
be seen that the runtime of this improved backtracking is proportional to the actual number 
of valid towers. Such a solution would score 30 points. 
Another algorithmic way to improve the search is to use memoization. Consider any state 
somewhere in the middle of the search: we have a partially built tower, and some set of 
unused cubes. What we need to compute is the number of ways in which the unused cubes 
may be placed in order to create a valid tower. The important thing to note at this moment 
is that this count does not depend on the order in which the used cubes are placed. The only 
two pieces of information we need are the set of unused cubes, and the index of the cube on 
the top of the tower so far. 
There are 2N possible sets of unused cubes and N possible cubes on the top of the partially 
built tower, hence there are O(N 2N) possible states of the search. Note that this is a signifi cant 
improvement over the initial N! possible states. For each of the states, we can compute the 

Examples



Central European Olympiad in Informatics28

answer in O(N) time by summing the answers of O(N) recursive calls: each corresponding 
to adding one of the unused cubes on the top of the tower. This approach scored 45 points. 
It could either be implemented as recursion with memoization, or as dynamic programming 
(In the dynamic programming solution, we would process the possible states ordered by the 
number of unused cubes in decreasing order. Note that whenever we process a state, we 
already processed all states that can be obtained by adding a cube to its current tower, and 
therefore we know the answers for these new states.) The recursive implementation could 
also be improved using the greedy check for no solutions to score at least 55 points.
The optimal solution is surprisingly simple and fast. It is based on the following observation: 
Remove one largest cube A and consider any valid tower built from the other N-1 cubes. 
Suppose we now want to insert the largest cube somewhere into the tower. Regardless of 
how the tower looks like, the number of ways in which we can do it is always the same: we can 
place A on top of any of the cubes that are within D of its size.
Let C(N-1) be the count of valid towers using the fi rst N-1 cubes, and let X(N) be the number of 
ways how to insert the largest cube into any such tower. It is easy to see that all X(N)*C(N-1) 
towers obtained in this way are distinct.
On the other hand, if we take any valid tower with N cubes and remove the largest cube, it can 
easily be seen that we will always obtain a valid tower with N-1 cubes. Hence there are exactly 
X(N)*C(N-1) towers built using all N cubes.
This solution can be easily implemented in O(N log N), for example by sorting and then 
traversing the sorted array using two indices to compute all values X(i).

July 12th –19th 2010, Košice, Slovakia 29

Results

Rank Contestant Country AL AR BO MP PI TO Score Medal

GOLD MEDAL

1 Anna Piekarska Poland 55 90 60 60 95 100 460 GOLD

2-3 Anton Anastasov Bulgaria 55 60 50 40 100 100 405 GOLD

2-3 Stjepan Glavina Croatia 25 40 40 100 100 100 405 GOLD

SILVER MEDAL

4-5 Ivan Katanić Croatia 55 90 50 40 100 55 390 SILVER

4-5 Ivica Kičić Croatia 55 90 50 0 95 100 390 SILVER

6-7 Bogdan-Cristian Tătăroiu Romania 35 80 50 10 100 100 375 SILVER

6-7 Tomáš Belan Slovakia 55 100 0 100 100 20 375 SILVER

8 Vladislav Haralampiev Bulgaria 100 10 50 10 100 100 370 SILVER

9 Jan Milczek Poland 100 20 20 20 100 100 360 SILVER

10 Vlad-Alexandru Gavrilă Romania 15 60 40 20 100 45 280 SILVER

BRONZE MEDAL

11 Rumen Hristov Bulgaria 5 10 50 70 100 40 275 BRONZE

12 Adrian Satja Kurdija Croatia 35 30 50 10 100 45 270 BRONZE

13 Adrian Jaskółka Poland 100 0 - 10 100 55 265 BRONZE

14 Simon Bürger Germany 65 - 0 0 90 100 255 BRONZE

15-16 Igor Adamski Poland 25 10 50 10 100 45 240 BRONZE

 15-16 Victor-Cristian Ionescu Romania - 40 50 40 15 95 240 BRONZE

17 Filip Hlásek Czech Rep. 15 10 0 40 100 45 210 BRONZE

18 Ján Hozza Slovakia 25 40 0 40 70 20 195 BRONZE

19 Mihail Kovachev Bulgaria 55 0 50 0 30 55 190 BRONZE

20 Richárd Palincza Hungary 0 40 40 0 90 0 170 BRONZE

21   25 - 0 40 15 45 125  
22   15 10 0 10 65 20 120  
23   - 0 - 10 0 100 110  
24   - 20 0 0 65 20 105  
25   - 30 0 0 50 20 100  

 26-28   10 0 0 0 70 15 95  
 26-28   0 20 0 0 55 20 95  
 26-28   15 0 10 10 40 20 95  

29   15 20 50 0 5 0 90  
30   0 20 50 10 5 - 85  
31   - 40 - 0 40 0 80  
32   15 40 0 - 15 - 70  
33   - 0 0 40 15 10 65  
34   0 0 - 0 15 40 55  
35   - - 0 - 30 20 50  
36   - 20 0 0 15 10 45  
37   - 10 0 0 25 0 35  
38   - 0 - - 30 - 30  
39   - 0 - - 15 10 25  
40   - 10 0 0 0 0 10  



Central European Olympiad in Informatics30

Rank Contestant Country AL AR BO MP PI TO Score Medal

GOLD MEDAL

1 Tiancheng Lou China 100 100 100 100 100 60 560 GOLD

2 Tomasz Kulczyński Poland 100 90 100 20 100 100 510 GOLD

3-4 Jiang Zhongtian China 100 80 100 20 100 45 445 GOLD

3-4 Feng Qiwei China 55 100 50 40 100 100 445 GOLD

5 Bai Chi  100 20 50 70 100 100 440 GOLD

6 Gao Xin China 100 30 100 0 100 100 430 GOLD

7 rpb  100 100 0 80 100 45 425 GOLD

SILVER MEDAL

8 China 100 40 30 20 100 100 390 SILVER

 Lan Zhou China 100 90 20 40 100 40 390 SILVER

 Yuchao Pan China 100 40 50 0 100 100 390 SILVER

 Jingshu Mao China 100 20 30 40 100 100 390 SILVER

12 Balrog China 15 80 50 40 100 100 385 SILVER

13 Zou Leqi China 100 40 --- 40 100 100 380 SILVER

14 HuangYicheng China 100 10 50 10 100 100 370 SILVER

15
Ali Babaee Cheshme

 Ahmad Rezaee
Iran 25 100 0 100 90 50 365 SILVER

16 Shang Wu China 100 50 50 30 100 30 360 SILVER

17 taobingxue China 100 10 0 40 100 100 350 SILVER

 Nicholas Jimsheleishvili Georgia 100 10 40 0 100 100 350 SILVER

 China 100 40 10 0 100 100 350 SILVER

20 Hanjun Dai China --- 90 50 --- 90 100 330 SILVER

21 Yuzhou Gu China 90 --- 30 0 100 100 320 SILVER

22 Shi Chen China 55 30 50 40 100 40 315 SILVER

23 Jiezhong Qiu China 100 10 --- 0 100 100 310 SILVER

 jiazhipeng China 100 20 50 20 100 20 310 SILVER

25 Zhuojie China 100 90 10 --- 100 --- 300 SILVER

 China 100 0 0 0 100 100 300 SILVER

 Luka Kalinovcic Croatia --- --- --- 100 100 100 300 SILVER

28 Yuan Deng China 100 --- 50 0 100 45 295 SILVER

 Gritskevich Eugene Belarus 15 20 50 10 100 100 295 SILVER

30 Shunning Jiang China 100 10 0 --- 70 100 280 SILVER

 China 100 0 0 0 90 90 280 SILVER

Results of the Online Contest (gold & silver medal):

July 12th –19th 2010, Košice, Slovakia 31

Statistics for the tasks (real contest):
# contestants = 40

alliances arithmetic bodyguards mp3player pin tower

Average number 
of points

34.46 28.65 23.82 20.56 58.88 45.14

# >=90 pts 
solutions

3 4 0 2 17 10

# >=50 pts 
solutions

10 7 13 4 23 13

The problem Bodyguard  was not solved by full point, but it was not the last one from the 
average point of view. 

Statistics for the tasks (online contest):
# contestants = 210 (with non zero results)

alliances arithmetic bodyguards mp3player pin tower

Average number 
of points

42.19 24.25 23.13 16.51 58.60 53.20

# >=90 pts 
solutions

39 18 9 4 76 44

# >=50 pts 
solutions

57 25 47 6 96 50



Central European Olympiad in Informatics32

Two gold medallists Anton Atanasov from 
Bulgaria and Stjepan Glavina from Croatia

Silver medallist Tomáš Belan from Slovakia

The winner Anna Piekarska from Poland

Photo Gallery

July 12th –19th 2010, Košice, Slovakia 33

Second competition day

Humanoid Nao in the team of Switzerland

Photo Gallery



Central European Olympiad in Informatics34

Monday, July 12

Time Contestants Leaders

- Arrival of Delegations

19:00 Dinner

20:00 Free Time Jury Meeting

Tuesday, July 13

Time Contestants Leaders

08:00 Breakfast

09:30
Opening Ceremony (UPJŠ, Moyzesova 11, lecture room M5)
Scientifi c Lecture (prof. V. Geffert: Multiway in-place merging)

11:30 Practice Session (Faculty of Science, Jesenná 5)

13:30 Lunch (Faculty of Science, Jesenná 5)

15:00 Sightseeing

19:00 Dinner

20:00 Free Time Jury Meeting (Faculty of Science)

Wednesday, July 14

Time Contestants Leaders

07:15 - 07:45 Breakfast -

08:00 - 08:30 - Breakfast

08:30 - 10:30 1st Competition Questions

10:30 - 13:30 1st Competition Free Time

13:30 Lunch (Faculty of Science)

14.30 Results of Evaluation (Faculty of Science)

15:00 - 18:00 Free Time (Gym, Medická 5)

18:30 Free Time Jury Meeting (Faculty of Science)

19:00 Dinner

20:30 Bowling - Spot

Thursday, July 15

Time Contestants Leaders

07:30 Breakfast

08:30
Trip to High Tatras:
A choice: Štrbské and Popradské pleso (pleso = a glacier lake)
B choice: Téry Chalet

19:00 Dinner

20:00 Free Time Jury Meeting (Faculty of Science)

Programme

July 12th –19th 2010, Košice, Slovakia 35

Friday, July 16

Time Contestants Leaders

07:15 - 07:45 Breakfast -

08:00 - 08:30 - Breakfast

08:30 - 10:30 2nd Competition Questions

10:30 - 13:30 2nd Competition Free Time

13:30 Lunch (Faculty of Science)

14.30 Results of Evaluation (Faculty of Science)

15:30 Popular Lecture (prof. Ing. P. Sinčák: Humanoid robot Nao in CIT TU Košice)

17:00 - 18:00 Free Time (Gym, Medická 5)

18:00 Free Time Jury Meeting (Faculty of Science)

19:00 Dinner

20:00 Sport, Activities Prepared by Guides

Saturday, July 17

Time Contestants Leaders

07:30 Breakfast

08:30 Trip to Krásna Hôrka Castle and Zádiel gorge

19:00 Dinner

20:00 Sport, Activities Prepared by Guides Jury and Organizing Committee Meeting

Sunday, July 18

Time Contestants Leaders

08:00 Breakfast

10:00 - 13:30 Excursion: Museum of Aviation in Košice

13:30 Lunch (Student Dormitory, Medická 4)

16:00 Awarding and Closing Ceremony (Historical hall, Šrobárova 2)

18:00 Dinner

Monday, July 19

Time Contestants Leaders

07:30 Breakfast

- Departure of Delegations

Programme

ISBN 978-80-89284-65-8



CONTACT

P.J. Šafárik University in Košice
Faculty of Science
Institute of Computer Sciences
WWW: http://ceoi2010.ics.upjs.sk

Address: Jesenná 5, 
041 54 Košice, Slovakia

SPONZORS:

Košice IT Valley
http://www.kosiceitvalley.sk/
Technická univerzita v Košiciach
Letná 9
040 01 Košice
 
Dopravný podnik mesta Košice, a.s.
http://www.dpmk.sk/
Bardejovská 6
043 29 Košice
 
EDUXE
http://www.eduxe.sk/
M.C. Sklodowskej 2
851 04 Bratislava

9 788089 284658

ISBN 978-80-89284-65-8



 
 
    
   HistoryItem_V1
   SimpleBooklet
        
     Create a new document
     Order: consecutive
     Sheet size: large enough for 100% scale
     Front and back: normal
     Align: centre each page in its half of sheet
     Do not scale pages (100% only)
     Space at edge of sheet: 28.35 points
     Crop style 1, width 0.30, length 20.00, distance 10.00 (points)
      

        
     0
     CentrePages
     Inline
     10.0001
     20.0001
     1
     Corners
     0.2999
     None
     1
     28.3465
     1
     0
     1
     16
     Consec
     642
     343
    
     0
     Sufficient
            
       CurrentAVDoc
          

     1
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

   1
  

 HistoryList_V1
 qi2base



